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All the unstable Archimedean polyhedral systems can be sym-
metrically transformed into Platonic polyhedral systems by accu-
mulating edges and vertices of the respective same number at each
of their normal edges and vertices. Furthermore, these Platonic
polyhedral systems can always ultimately be transformed into at
least one of the three possible cases of fundamental omnitriangu-
lated structural systems, viz. the tetrahedron, the octahedron
and the icosahedron. Finally, the periodic relations inherent in
these rational transformations can be reduced to "Structural
Quanta'". Next, the dynamic topological frame models complex are
constructed by the complementary allspace-fillers of Plateonic and
Archimedean polyhedral systems, which demonstrate the reciprocal
allspace-filling transformations of four dimensional mobility.

INTRODUCTION

In topology, Euler says in effect, all visual experiences
can be resolved into three unique and irreducible aspects;
vertices, faces and edges--or points, areas and edges.

In terms of Synergetics Topology, they are called respectively
joints, windows and struts (Fuller 1975a).

Only the topological analysis of synergetics can account for
all the multicongruent --two-, three-, fourfold-- topological
aspects (Fuller 1979), by accounting for the primitive six
vectors and four vertices of tetrahedron inventories of all
Platonic and Archimedean polyhedral systems. Their respective
primitive inventories of the topological aspect are always
present at all phases of the rational convergence transformation
of the Platonic and Archimedean symmetrical structural systems,
which is demonstrated in "Periodic Table of Synergetics Topology"
and proves the quantum phenomena in terms of "3 Ground States" of
Synergetics Topology (Kajikawa 1984, 1985).
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1. Periodic Table of Synergetics Topology: Structural Quanta
Synergetics Topology' always symmetrical, continuous, com-

plimentarily expanding and contracting, inter-transformings dis-

close a succession of "local way stations" which constitute a
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periodic hierarchy. These progressive arrivals are recognizable
as the family of Platonic or Archimedean polyhedra. All the
vertices of the successive forms by the angular closing of imme-
diately adjacent edges of the polyhedra are always diminishingly
equidistant from the same centers. The vertices of each of these
intertransforming states are always positioned in a progressively
expanding or contracting sphere while still maintaining the same
distances between the adjacent two vertices.

The flexible joined regular and semi-regular unstable poly-
hedral systems can be folded into those with fewer regular plane
windows, accomplishing the symmetrical collapsing of the same
kind of regular windows and ultimately into at least one of the
multiple congruent tetrahedra, octahedra or icosahedra which are
enclosed with the omnitriangulated windows. The only 3 possible
omnitriangulated and omniequiangulated structural systems are
defined as "3 Ground States" of Synergetics Topology.

Both the flexible joined regular and semi-regular vector-
strut models lie with all the joints (vertices or points) in a
containing sphere, the circumsphere. Each and every vector-
length between the adjacent two joints are equal. There are only
3 possible types of flexible joints, because all of Platonic and
Archimedean polyhedral systems can be sorted out by three, four
or five vectors around each of their vertices; valency of the
system. All models of polyhedral systems used in this research
are made of these three types of flexible joints, windows and
struts of the same length (Kajikawa & Sagara 1984b, 1985c).

The following are full explanations of the data given in
"Periodic Table of Synergetics Topology".

Column 1) shows the polyhedral systems arranged in order of
number of edges, from 1 to 18.

Column 2) contains the tetrahedron, the octahedron and the icosa-
hedron constructed from equilateral triangles. They are the
only 3 possible omnitriangulated structures in nature.

Column 3) contains the 15 unstable Plato-Archimedean polyhedral
systems.

Column 4) gives the geometric name for each of the polyhedral
systems.

Column 5) shows the number of edges for each polyhedral system.

Column 6) shows how all of the unstable regular and semi-regular
polyhedral systems can be folded into those with fewer plane
windows and ultimately into at least one of "3 Ground
States" by accumulating vector-struts of the same number at
each of their normal vector-struts. The numbers appearing
in this column signify the number of multiple congruent
polyhedral systems which will be formed by the continuous
contracting process with the axial spinnability. The ar-
rows, xXx—-y mean that the continued folding of the figure x
will result in y.

Column 7) show that when the numbers of vector-edges of each
polyhedral system is divided by 6, the result will be one or
more of the synergetics first four prime numbers, 1, 2, 3, 5
or multiples thereof. There are either six vectors or none.
Six vectors equal one minimum structural system. 6 edge-
vectors = 1 structural quantum. (quantum means one of the
small subdivisions of a quantized physical magnitude) The
definable system of all Plato-Archimedean polyhedra is
tetrahedrally coordinate in rational number increments of
the tetrahedron.
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Flg:. ils Symmetrical Contraction of Cube with Axial Spinnability
of Two Poles: Tetrahedral Progression

The axis transfixes the cube through the opposing north and south
poles (1). 1If each pole rotates about the axis in the opposite
direction by the angular closing of adjacent edges (1), the cube
will contract symmetrically to bring together the two opposed
vertices which lie on the diagonal of the square (2) until it
becomes first the incomplete octahedral phase (3). In this case
the two sets of double edges suggest polarization. Next, as the
two poles approach each other on the axis to come together the
other pairs of opposing vertices (4) (5), the cube folds into two
congruent tetrahedra(6). We have arrived at the tetrahedron as a
precessional results. The double tetrahedra is the limit case of
contraction that expands again symmetrically only to contract
once more to become the other double tetrahedra. The cube con-
sists of a positive (red) and a negative (black) tetrahedron and
is an indivisible unity. 1In other words, since the total number
of edges and vertices of the cube is exactly twice that of the
tetrahedron, we can refer to the cube as "two quanta" in our
tetrahedral system. Ranking the models in terms of the number of
edges, column 5 of the table shows how 18 types of Platonic and
Archimedean polyhedra are all, without exception, composed of
edges whose numbers are multiples of six. Multiplication occurs
only through the rational fractionation of the complex unity of
the minimum prime structural systems.
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4.

Fig. 2. Four Spoke-Axes of Dodecahedron with Rotating Vertices:
Tetrahedral Progression

If four black vertices which have a tetrahedral configuration in
the dodecahedron (1) slide inwardly and other four red vertices
slide outwardly with spinning on eight spoke-axes forming four
axes in right direction, the whole system becomes first the three
frequency tetrahedral phase (2). And if four red vertices start
to spin inwardly toward "the right" on four axes, the whole
system will contract until it becomes the complex unity of the
tetrahedra (3). Only by abandoning the four spoke-axes in the
system, the dodecahedron will ultimately become the five
congruent tetrahedra with spinning on the remaining four spoke-
axes (4).

There is the right-handed dodecahedron. To collapse a dodeca-
hedron into five congruent tetrahedra so as to preserve the color
symmetry at each of tetraedges (the combination of two red edges,
two black edges and one white edge), we must rotate it left or
right on the axis produced by treating the two vertices of the
dodecahedron as N and S pole respectively.

The significance of "the additive twoness" in Euler's formula
V+F=E+2 is also borne out here in the function of the north and
south polarity. 1In the transformation of the dodecahedron, the
polarity of the same two opposed vertices is always preserved and
finally the two poles overlap on the axis to arrive at the most
primitive state. The polarity is inherent in congruence, dis-
closing the most stabilized symmetrical state of numbered
synergetics topological hierarchy.
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Column 8) shows that in a guantum leap, the increase or decrease
in the number of guanta will always appear in the order of
the synergetics first four prime numbers, 1, 2, 3 or 5.

2. Basic Frame Models of Synergetics Topology

We can thread a nylon string through each of the 12 equal-
length tubes twice to make a loop and fasten them together with
three tubes joined at each of 8 corners to make the cube, which
proves to be structurally unstable (See Fig. 1). The tubular
frame models of all Platonic and Archimedean polyhedra can be
constructed by using this loop-ligature technique (Kajikawa 1983,
Kajikawa & Sagara 1984a)
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Fig. 3. A Loop Formed by Stringing Twice Through Each Tube

) A loop of the cube.

) Detail of the loop joint connected with three tubes.

) A loop of the octahedron.

) Detail of the loop joint connected with four tubes: The
string always turns left or right at each corner to make a
loop.

(1
(2
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3. Rotation of Four Axes of Truncated Cube: Articulation of Eight
Triangular Faces with Twelve Edges

We can have a truncated cube model made out of tubular
frames colored in red, black and white with each of the eight
transparent plastic triangles connected by four axes with a
journal to slide on the shafts. Each shaft consists of a stain-
less steel rod which is perpendicular to two of the eight
triangular faces. This model was invented in 1984-85 (Kajikawa
& Sagara 1985b).

The term "truncated" in the names of most of Archimedean
polyhedra refers to the new faces created by lopping off the
vertices or the edges of the solid. However, in the dynamic
frame models the lopping off neither increases nor decreases the
total number of faces. By rotating the regular polygons we
merely bring about either an expansion or a contraction of the
model itself. By means of the rotation we are doing no more than
opening or closing windows in the model. 1In the various contrac-
ting phases, each one of their vertices brings about a further
circumspherical condition to accommodate the whole motion. The
instantaneous appearance of the next neighboring state in its
simplest and completely symmetrical condition is what we mean by
a "way-station" state with structural quanta.

It is visually evidenced that at the "way-station" states in
"Periodic Table of Synergetics Topology", the smoothly omni-
intertransforming is four-dimensioned, accommodated by local
rotations around four axes of the system. Rotation of four axes
of the truncated cube demonstrates the progressive arrivals at
these various convergent-divergent transformations.

A. If four red triangles of the model spin in left direction and
four black triangles spin in right direction inwardly on four
axes, the whole system will contract symmetrically until it
becomes first the incomplete rhombicuboctahedral phase and
finally the icosahedral phase. At this stage, the icosahedron
has six sets of double white edges and twenty-four edges com-
prising eight sets of red and black triangles with eight
spokes forming four axes running through the centers of the
uncolored areas of the transparent plastic triangles. There
is a direction of spin that throws a twist into the system --
positive and negative. The right-handed icosahedron and the
left-handed icosahedron are not the same. We can see that
there are really two different icosahedra by means of coloring
the vectors to identify them (Kajikawa & Sagara 1985a) (See
Fig. 4a). '

B. If all the triangles of the truncated cube model spin inwardly
on four axes in the same direction, the whole system will also
contract symmetrically until it becomes the incomplete right-
handed or left-handed snub cube phase, and finally the octa-
hedron phase. At this stage, the vector edges have tripled.
There is also a direction of spin that throws a twist into the
system --positive and negative. The right-handed octahedron
and the left-handed octahedron are not the same (See Fig. 4b).

C. If four red triangles of the truncated cube model spin in-
wardly in left direction and four black triangles slide in-
wardly along the four axes without spinning, the whole system
will contract symmetrically until it becomes the cuboctahedral
phase, which has the four sets of double-edged red and white
triangles and the four sets of single-edged black triangles
(See Fig. 4c).
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D. The eight triangles are always linked with twelve white edges
between each of the two adjacent triangles and when one trian-
gle is turned in the opposite direction, the others also
rotate automatically to interlock the whole system. This link
motion reverses the system to the potential alternate cubocta-

Fig. 4a. Four Axes of Truncated Cube with Rotating Triangles:
Icosahedral Progression

If the truncated cube is constructed with 36 circumferential
vectors joined at each of 24 corners, each triangle rotates about
8 spokes forming 4 axes, meeting at its center, and approaches
its center due to the instability of the octagonal faces. Its
various phases are shown in both left- and right-handed contrac-
tion.
(1) Truncated cube phase: the beginning of the transformation.
(2) The incomplete rhombicuboctahedral phase: When the short
diagonal dimension of the octagonal face is equal to the
truncated cube's edge length, new 18 square faces are formed.
(3) Icosahedral phase: There are no more octagons and squares.
We have a condition of omnitriangulation. Around every ver-
tex we can always count five. Note that in both left- and
right-handed case three pairs of opposite doubling white
edges which are parallel to one another suggest the alternate
skew-transformation by precessional rotation.
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1. 2: 3.

Fig. 4b. Four Axes of Truncated Cube with Rotating Triangles:
Octahedral Progression

The system's vertices always remain spherically arrayed, and
describe a smooth, overall, spheric continuum-contraction from
the largest to the smallest.

As each triangle spins inwardly on four axes in the same
direction, the truncated cube (1) transforms through the incom-
plete snub cube phase (2) and ends at the octahedral phase (3).
Note that because the truncated cube has 36 edges and 24 vertices
the octahedra have accumulated 3 edges and 4 vertices respective-
ly at each of their 12 normal edges and their 6 normal vertices.

1 2. 3.

Fig. 4c. Four Axes of Truncated Cube with Rotating Triangles:
Cuboctahedral Progression

The four red triangles of the truncated cube (1) spin inwardly in
right or left direction and the four black triangles slide in-
wardly along the four axes without spinning (2) until the whole
system becomes the cuboctahedral phase (3).

10
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Fig. 4d. Rotation of Triangles on Four Axes: Alternation of
Color Symmetry

When one of the red triangles of the cuboctahedral phase (1) is
turned in the opposite direction, the other triangles also rotate
automatically to interlock the whole system (2). Finally this
link motion reverses the system to the alternate cuboctahedral
phase again (3).

1. 2. 3.

Fig. 4e. Four Axes of Truncated Cube with Rotating Triangles:
Intermediate Transformations as Jitterbug System

Due to the instability of the square faces, there is a further

contraction toward the octahedral phase. This symmetrical

transformation is similar in the convergent-divergent primitive
states which have been referred to as the "jitterbug" (Vector

Equilibrium) by R.B.Fuller and the structural guanta in the

stabilized states are different.

(1) Vector Equilibrium (cuboctahedron) phase: Note that the only
four triangle parts have the doubling of the edges.

(2) Icosahedral phase: When the short diagonal dimension of the
guadrilateral face is equal to the vector equilibrium's edge
length, twenty equilateral triangular faces are formed.

(3) Octahedral phase: Note the tripling of the edges.
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hedral condition again. But the new cuboctahedral phase have
completely rearranged the color symmetry of the doubling of
the edges (See Fig. 44d).

E. If all the triangles of the cuboctahedral phase start to
rotate about these axes, just as in the single cuboctahedron
("Jitterbug" in Fuller notation), the whole system will con-
tract symmetrically until it becomes first the incomplete
icosahedral phase, and finally the octahedral phase. At this
stage, the vector edges have tripled, too (See Fig. 4e).

4. Symmetrical Contractions with Axial Rotations of Platonic and
Archimedean Polyhedral Systems
The platonic and Archimedean polyhedral systems to be trans-
formable into one of "3 Ground States" have:
A, the inherent axial rotation.
B. the local-surface's spiral wrinklings caused by axial torque,
when one pole spins right and the other spins left.
C. the polarity that is inherent in congruence.
D. the symmetrical transformation positioned in a sphere that
is progressively expanding or contracting.
There are 14 new dynamic frame models of Synergetics Topology.
(1) Rotation of 1 Axis of Cube (See Fig. 1)
(2) Rotation of 4 Spoke-Axes of Truncated Tetrahedron
(See Fig. 9)
(3) Rotation of 1, 4 Spoke-Axes or 4 Axes of Dodecahedron
(See Fig. 2)
) Rotation of 1, 3 or 4 Axes of Truncated Octahedron
5) Rotation of 1 or 4 Axes of Truncated Cube (See Fig. 4a, 4b,
4c, 44, 4e)

(6) Rotation of 1, 3 or 4 Axes of Rhombicuboctahedron

(7) Rotation of 1, 3 or 4 aAxes of Snub Cube

(8) Rotation of 1, 3 or 4 Axes of Icosidodecahedron (See Fig. 5)
(9) Rotation of 1, 3 or 4 Axes of Truncated Cuboctahedron

(10

(11

) Rotation of 1 or 10 Axes of Truncated Dodecahedron

) Rotation of 1,4 Spoke-Axes or 6 Axes of Truncated Icosa-
hedron (See Fig. 6)

) Rotation of 1, 3, 4, 6 or 10 Axes cf Rhombicosidodecahedron

) Rotation of 1 or 4 Spoke-Axes of Snub Dodecahedron

) Rotation of 1, 3, 4, 6 or 10 Axes of Truncated Icosidodeca-
hedron

(See "Periodic Table of Synergetics Topology" including the

axial spinnability of vertices or faces.)

RECIPROCAL ALLSPACE-FILLING TRANSFORMATIONS

1. Allspace-filling Transformations of Truncated Cube

Because the truncated cube and the octahedron will fill
space, it is possible to visualize a device for the continuous
allspace-filling "truncated cube" transformations. If we join
many truncated cubes at their regular octagonal faces in a double
allspace-filling arrangement, the triangular faces form octa-
hedral voids. After we put together a large omnidirectional
complex of sets of four axes and eight transparent plastic trian-
gles with twelve edges, we can interconnect the triangles of the
octahedral voids from set to set with alternate sets of twelve
edges (See Fig. 7-1). As the truncated cubes contract towards
each center, just as in the "single truncated cube'", they trans-
form through the rhombicuboctahedral phase and the cuboctahedral
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Fig.

1. 2. 3.

B Four Axes and Three Axes of Icosidodecahedron with

Rotating Triangles and Vertices

It is possible to arrange 20 triangles around pentagons. The
shape is the icosidodecahedron. This model is constructed with
eight spokes forming four axes and six spokes forming three axes,
meeting at its center, which pass through the centers of eight
triangles and six vertices respectively (1).

If six vertices which have a octahedral configuration in the
icosidodecahedron spin outwardly on the three axes and eight
triangles spin inwardly on four axes in the opposite direction
respectively, the whole system will become first two frequency
right- or left-handed octahedral phase (2). And if six vertices
start to approach its center, the whole system will contract to
become the cuboctahedral phase (3).

Fig.
gons:

1. 2. 3.

b Six Axes of Truncated Icosahedron with Rotating Penta-

Dodecahedral Progression

The shape is the truncated icosahedron (1). When a model is con-
structed with 12 spokes ,i.e. six axes, meeting at its center,
which pass through the centers of each pentagon, a symmetrical
behavior results. If the twelve pentagons of the model spin
inwardly on six axes in the same direction, the whole system will
contract symmetrically until it becomes first the incomplete
right-handed or left-handed snub dodecahedral phase (2), and
finally the dodecahedral phase (3). Note that because the trun-
cated icosahedron has 90 edges and 60 vertices the dodecahedra
have accumulated 3 edges and 3 vertices respectively at each of
their 30 normal edges and 20 normal vertices. 3 congruent dodec-
ahedra can be ultimately transformed into 15 congruent tetrahedra
in similar progressive way of a normal dodecahedron by replacing
the six axes with the four spoke-axes (See Fig. 2).

18—
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Fig.7. Reciprocity of Truncated Cubes and Octahedra in Space-
Filling "Truncated Cube"

In the allspace-filling "truncated cube" transformation, we find
that if one force is applied to one triangle of one open trun-
cated cube, the actual truncated cube closes to become an octa-
hedron throughout the whole system and that each one of their
vertices brings about a further spherical condition to accommo-
date the whole motion with a large omnidirectional complex of
sets of four axes. The original truncated cubes (1) contract
through rhombicuboctahedral phase (2) and cuboctahedral phase (3)
and ultimately become octahedra (4). There is a complete change
of the two figures. There is also a force distribution lag in the
system. The distance between each of the two adjacent cores of
the models is always constant in both double (1) (4) and triple
(2) (3) allspace-filling arrangements.

— 14 —
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Fig. 8. Reciprocity of Truncated Tetrahedra and Tetrahedra in
Space-Filling "Truncated Tetrahedron"

Because the truncated tetrahedron and the tetrahedron will fill
space, it is possible to visualize a space-filling "truncated
tetrahedron" transformation. If we combine truncated tetrahedra
on their regular hexagonal faces in a dual allspace-filling
arrangement, the triangular faces form tetrahedral voids (1). As
the truncated tetrahedra contract towards each center, just as in
the single "truncated tetrahedron'"(See Fig.9), they transform
through the icosahedral phase , and end at the tetrahedral phase
(2). Every truncated tetrahedron will become a tetrahedron and
every tetrahedron will become a truncated tetrahedron on a large
omnidirectional complex of the sets of four spoke-axes, because
in the allspace-filling transformation there are constant numbers
of actual triangular faces. There is a complete change of the
two figures and a force distribution lag in the system.

3.

1.

Fig« 9. Four Spoke-Axes of Truncated Tetrahedron With Rotating
Triangles

If four triangles of the the truncated tetrahedron (1) spin in
the same direction, the system will contract symmetrically until
it becomes the incomplete icosahedral phase (2) and finally the
tetrahedral phase (3). At this stage, the vector edges have
tripled.

— 15 —
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2 8 2%

Transformation of Dodecahedron and Great Stellated

Dodecahedron as Space-Filling "Cubic Disequilibrium"

Fig.
Order

If we join many dodecahedra with four axes at the parts of their
regular pentagonal faces in a dual allspace-filling arrangement,
the pentagonal faces form the incomplete great stellated dodeca-
hedral voids with four axes (1).

In the allspace-filling "cubic disequilibrium" transformation,
the dodecahedra contract to become the incomplete great stellated
dodecahedra, and the original incomplete great stellated dodeca-
hedra expand and ultimately become dodecahedra (2). There is a
rotationlessly complete change of the two figures.

11.

Reciprocity of Cubic Disequilibrium with Icosahedral

If the dodecahedron (1) collapses toward its center to preserve
the three parallel pairs of white edges, it becomes the incom-
plete great stellated dodecahedron (2). At this stage, both ends
of six white edges form twelve vertices of the icosahedral phase.
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phase (See Fig. 7-2, 7-3), which appears throughout the whole
system as a triple allspace-filling arrangement of cuboctahedra,
rhombicuboctahedra and cubes, and end at the octahedron phase
(See Fig. 7-4), which appears again as a double allspace-filling
arrangement of truncated cubes and octahedra .

In other words, the original octahedra expand and ultimately
become truncated cubes. Every truncated cube will become an
octahedron and every octahedron will become a truncated cube on a
large omnidirectional complex of sets of four axes. There is a
complete change of the two figures. This oscillating motion
makes an expanding and contracting system. 1In doing so, with a
oscillating system and a pulsating circumspherical expansion-
contraction going on everywhere locally, the system becomes an
optically pulsating circumsphere.

Each exterior octahedron is a contracted truncated cube and
is approximately one of the spaces between the circumspheres of
the actual truncated cubes which overlap locally. Each octahedron
thus becomes available as a potential alternate new circumsphere
when the old circumspheres become spaces.

2. Other Types of Reciprocal Allspace-Filling Transformations

"Rotation of 4 Axes of Vector Equilibrium" (vector equilib-
rium means cuboctahedron) was discovered by R.B.Fuller in 1944
(Fuller 1975b). In 1976 he further conceived and designed a
limited edition of the metal sculpture "Complex of Jitterbugs",
demonstrating 4-D wave generation as the reciprocity of cubocta-
hedron and octahedra in a allspace-filling jitterbug. This is
the first complex model of synergetics topology with four axes,
which has been provided with omnidirectional conceptual compre-
hension of the separate and combining transformations of local
energy events (Fuller 1975c¢).

By using the other types of the reciprocal allspace-filling
transformations, which I had the good fortune to discover and
develop in 1984-85 (kajikawa & Sagara 1985), we make a single
energy action in the spinning system and a complete omnidirec-
tional rotation occurs so that every one of the faces of the
complementary allspace filler can shuttle back and forth.
Synergetics Topology adds six more reciprocal space-filling
transformations:

(1) truncated tetrahedron + tetrahedron (See Fig. 8)

(2) truncated cube + octahedron (See Fig. 7)

(3) truncated octahedron + cube + truncated cuboctahedron

(4) cube + rhombicuboctahedron + tetrahedron

(5) truncated octahedron + cuboctahedron + truncated tetrahedron
(6) rhombicuboctahedron + cuboctahedron + cube

The distance between each of the two adjacent cores is always
constant in both double and triple allspace-filling arrangements.
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